When using linear rendering, input values to the lighting equations are different to those in gamma space. This means differing results depending on the color space. For example, light striking surfaces has differing response curves, and Image Effects behave differently.
The fall-off from distance and normal-based lighting differs in two ways:
When rendering in linear mode, the additional gamma correction that is performed makes a light’s radius appear larger.
Lighting edges also appear more clearly. This more correctly models lighting intensity fall-off on surfaces.
When you are using gamma rendering, the colors and Textures that are supplied to a ShaderA program that runs on the GPU. More info
See in Glossary already have gamma correction applied to them. When they are used in a Shader, the colors of high luminance are actually brighter than they should be compared to linear lighting. This means that as light intensity increases, the surface gets brighter in a nonlinear way. This leads to lighting that can be too bright in many places. It can also give models and scenesA Scene contains the environments and menus of your game. Think of each unique Scene file as a unique level. In each Scene, you place your environments, obstacles, and decorations, essentially designing and building your game in pieces. More info
See in Glossary a washed-out feel. When you are using linear rendering, the response from the surface remains linear as the light intensity increases. This leads to much more realistic surface shading and a much nicer color response from the surface.
The Infinite 3D Head Scan image below demonstrates different light intensities on a human head model under linear lighting and gamma lighting.
When blending into a framebuffer, the blending occurs in the color space of the framebuffer.
When you use gamma space rendering, nonlinear colors get blended together. This is not the mathematically correct way to blend colors, and can give unexpected results, but it is the only way to do a blend on some graphics hardware.
When you use linear space rendering, blending occurs in linear color space: This is mathematically correct and gives precise results.
The image below demonstrates the different types of blending:
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.